Соматическая сенсорная система обеспечивает ощущение, которое возникает благодаря информации, поступающей от рецепторов тела. Эти рецепторы можно разделить на следующие группы:

Механорецепторы, включая тактильные и проприоцептивные;

Терморецепторы (холодовые и тепловые)

Болевые рецепторы, которые активируются при повреждающих воздействиях.

Характеристика тактильных рецепторов. Ощущения, которые возникают при возбуждении этих рецепторов - прикосновение, давление, вибрация, першение, зуд. Тактильные рецепторы располагаются в разных участках кожи (эпидермиса и дермы). Ощущение возникает при раздражении поверхностных участков кожи, а давление - более глубоких.

Тактильных рецепторов насчитывают 6 видов:

1. Свободные нервные окончания - полисенсорной, которые могут возбуждаться при действии как механических, так и температурных воздействий.

2. Тельца Мейснера - рецепторы прикосновения, представляют собой инкапсулированные нервные окончания. Они быстро адаптируются. их много на коже пальцев, ладоней, подошвенной поверхности.

3. Диски Меркеля - их также много на кончиках пальцев рук. Они вместе с тельцами Мейснера участвуют в локализации раздражений. Они медленно адаптируются. Диски Меркеля иногда группируются в куполообразные рецепторы Пинкуса - Игго.

4. Тельца Руфина - разветвленные инкапсулированные окончания нервных волокон. Они расположены в глубоких слоях кожи, плохо адаптируются.

5. Тельца Пачини - Наибольшая крупные рецепторы, которые имеют форму луковицы. Они располагаются более глубоко и в фасциальных тканях (рис. 12.1). Тельца Пачини раздражаются при быстром перемещении тканей, поэтому важны для оценки быстрых механических воздействий. Адаптируются быстро. Они встречаются в местах соединения мышц и сухожилий в тканях суставов, их величина от 0,4 до 0,5 мм.

6. Рецепторы волосяных фолликулов, образованные нервными волокнами, расположенными в основании волос. Они быстро адаптируются.

Характеристика тактильных рецепторов

Ощущения, которые возникают при возбуждении этих рецепторов, - прикосновение, давление, вибрация, першение, зуд. Тактильные рецепторы располагаются в разных участках кожи (эпидермиса и дермы). Ощущение возникает при раздражении поверхностных участков кожи, а давление - глубоких.

В определении ощущение вибрации тканей участвуют все тактильные рецепторы. При разной частоте вибрации возбуждаются различные рецепторы. Ощущение щекотки и зуда связано, в основном, со свободными нервными окончаниями, быстро адаптируются. Такие рецепторы есть только в поверхностных слоях кожи. Зуд очень важно для распознавания ползания насекомых по коже или укуса комара, который вызвал зуд.

Оценка порогов тактильного ощущения происходит с помощью естезиометра Фрея, который позволяет определить силу давления, возникающего на поверхности кожи. Порог ощущения для различных участков кожи различен и составляет 50 мг - для наиболее чувствительных и 10 г - наименее чувствительных. Пороги пространственного разрешения для тактильной чувствительности позволяют оценить плотность расположения рецепторов. их определяют с помощью циркуля Вебера, имеет две "ножки" с иглами. Раздвигая их, можно найти ту минимальное расстояние, на котором два доти-

Рис. 12.1. Схема строения механорецепторов кожи на участках, не имеющих волос (А) и с волосами (Б):

1 - роговой слой, 2 - эпидермис, 3 - кориум, 4 - подкожная клетчатка, 5 - тельце Мейснера, 6 - диск Меркеля, 7 - тельце Пачини, 8 - рецептор волосяного фолликула, 9 - осязательный диск, 10 - окончание Руфина

ки воспринимаются отдельно. Это и будет пространственный порог различения. Для рецепторов кожи губ он равен 1 мм, для кожи подушечек пальцев рук - 2,2 мм, для кожи кисти руки - 3,1 мм, для кожи предплечья - 40,5 мм, а для кожи затылка и спины - 54-60 мм, бедра - 67,6 мм.

Оценка тактильного ощущения имеет важное значение для клиники нервных болезней при постановке диагноза впечатление различных отделов ЦНС.

характеристика проприорецепторов

Проприорецепция обеспечивает восприятие позы и движений нашего организма. Она обеспечивает глубокую, кинестезические чувствительность. Проприорецепторы - механорецепторы, которые раздражаются при растяжении

Проприорецепторы разделяют на 2 группы:

1) мышечные веретена;

2) сухожильные органы Гольджи.

Мышечные веретена находятся в мышцах. К рабочим мышц они прикрепляются параллельно, поэтому возбуждаются или при растяжении экстрафузальных мышц, или при сокращении мышечных волокон веретен - интрафузальных мышц. В связи с этим их называют рецепторами растяжения. Эти рецепторы участвуют в регуляции длины мышц и в оценке скорости изменения длины мышц.

Сухожильные органы Гольджи располагаются в сухожилиях, связках, суставах. Они прикрепляются с одного конца к мышце, а с другой - к его сухожилия, поэтому располагаются по отношению к мышце последовательно, но раздражаются также растяжением, которое возникает при сокращении рабочего мышцы и росте его напряжения. Они участвуют в регуляции тонуса мышц.

характеристика терморецепторов

Терморецепторы расположены не только в коже, но и во внутренних органах и даже в ЦНС (гипоталамус). Они являются первичными рецепторами, поскольку образованные свободными нервными окончаниями и делятся на холодовые и тепловые.

Значение терморецепторов заключается не только в определении температуры среды или предметов. Они играют большую роль в регуляции постоянства температуры тела человека и животных. Терморецепторы хорошо адаптируются.

Понятие терморецепторы является дискуссионным. Считают, что терморецепторами в коже свободные нервные окончания, а также тельца Руффини и колбы Краузе. Есть мнения, что вместо термина "терморецепторы" следует использовать понятие "тепловые точки", которые избирательно чувствительны к теплу или холоду. Отсутствие единого мнения обусловлена тем, что морфологически идентифицировать тепловые или холодовые рецепторы оказалось довольно сложно. Перед гистологическим исследованием ткани замораживают, чтобы сделать тонкие послойные срезы, и установить тип рецепторов, чувствительных к теплу или к холоду, не удается. учитывая это, целесообразно употреблять термин "термосенсор", а вопрос морфологической идентификации остается за будущим.

Есть данные, что количество температурных рецепторов (точек) на коже человека является непостоянной и в одной и той же области меняется в зависимости от температуры этого участка и ряда других факторов. Чем ниже температура кожи и окружающей среды, тем больше холодовых рецепторов и меньше функциональная активность тепловых. При высоких температурах ситуация противоположная. Имеет значение и закалку организма. В адаптированных людей количество холодовых рецепторов на холоде меньше, чем в неадаптированных.

Проводной и корковый отделы соматической сенсорной системы

От проприорецепторов импульсы идут в составе афферентных волокон группы А-альфа (70-120 м / с), от тактильных рецепторов - в составе афферентных волокон группы А-бета (40-70 м / с) и А-дельта (15-40 м / с), а для импульсов, идущих от рецепторов, вызывающих зуд - в составе с-волокон (0,5-3 м / с). Проведение импульсов от терморецепторов осуществляется волокнами группы А-дельта и С-волокнами.

От туловища и конечностей импульсы идут в составе спинномозговых нервов, а от головы - в составе тройничного нерва. Для проведения импульсов, обеспечивающих тактильную чувствительность, используются спинномозговой-кортикальные тракты Голля и Бурдаха.

Корковое представительство соматической сенсорной системы находится в постцентральной извилине см-И (рис. 12.2).

Пробковое представительство соматосенсорной системы характеризуется рядом особенностей.

1. соматотопической организацией - определенным расположением проекций участков тела в ней. Тело спроектировано в постцентральной извилине вверх ногами.

2. Несовпадение размеров этих проекций: самые территории занимают язык, губы, гортань, кисть, как важнейшие для оценки раздражение. Маленькие территории - проекции туловища и нижних конечностей.

3. контралатерально расположения проекций. От рецепторов левой стороны импульсы поступают в правое полушарие, а от правой стороны - в левое полушарие.

4. Состоит преимущественно из моносенсорних нейронов.

Раздражение участка см-И приводит к возникновению ощущений, идентичных тем, которые возникают при воздействии раздражителей (прикосновение, вибрация, тепло, холод, редко боль).

Ассоциативная участок См-II находится у латерального конца постцентральной извилины на верхней стенке сильвиева борозды и состоит преимущественно из полисенсорных нейронов. Она имеет билатеральное соматотопической представительство тела, поэтому играет существенную роль в сенсорной и моторной координации двух сторон тела (например, при воздействии обеих рук).

Повреждения участка см-И - приводит к нарушению тонкой локализации ощущений, а повреждения участка см-II - до астереогнозии - неузнаваемости предметов при ощупывании (без контроля зрения).

Структурно-функциональная характеристика кожного анализатора

Соединение путей кожных и висцеральных в :
1 - пучок Голля;
2 - пучок Бурдаха;
3 - задний корешок;
4 - передний корешок;
5 - спиноталамический тракт (проведение болевой чувствительности);
6 - двигательные аксоны;
7 - симпатические аксоны;
8 - передний рог;
9 - проприоспинальный путь;
10 - задний рог;
11 - висцерорецепторы;
12 - проприорецепторы;
13 - терморецепторы;
14 - ноцицепторы;
15 - механорецепторы

Его периферический отдел находится в коже. Это болевые, осязательные и температурные рецепторы. Болевых рецепторов около миллиона. Возбуждаясь, они создают ощущение , что вызывает защитную организма.

Осязательные рецепторы вызывают ощущение давления и соприкосновения. Эти рецепторы играют существенную роль в познании окружающего мира. С помощью мы определяем не только, гладкая или шероховатая поверхность у предметов, но и их величину, а иногда и форму.

Не менее важно осязание и для двигательной деятельности. В движении человек соприкасается с опорой, предметами, воздухом. Кожа в одних местах растягивается, в других - сжимается. Все это раздражает осязательные рецепторы. Сигналы от них, поступающие в чувствительно-двигательную зону, коры полушарий, помогают ощутить движение всего тела и его частей. Температурные рецепторы представлены холодовыми и тепловыми точками. Они, как и другие рецепторы кожи, распределены неравномерно.

Наиболее чувствительна к воздействию температурных раздражителей кожа лица и живота. Кожа ног по сравнению с кожей лица в два раза менее чувствительна к холоду и в четыре - к теплу. Температурные помогают ощущать структуру комбинации движений и скорость. Происходит это потому, что при быстром изменении положения частей тела или большой скорости передвижения возникает прохладный ветерок. Он воспринимается температурными рецепторами как изменение температуры кожи, а осязательными - как прикосновение воздуха.

Афферентное звено кожного анализатора представлено нервными волокнами спинномозговых нервов и тройничного нерва; центральные отделы, главным образом, в , а корковое представительство проецируется в постцентральную .

В коже представлена тактильная, температурная и болевая рецепция. На 1 см2 кожи, в среднем, приходится 12-13 Холодовых точек, 1-2 тепловых, 25 тактильных и около 100 болевых.

Тактильный анализатор является частью кожного анализатора. Он обеспечивает ощущения прикосновения, давления, вибрации и щекотки. Периферический отдел представлен различными рецепторными образованиями, раздражение которых приводит к формирова­нию специфических ощущений. На поверхности кожи, лишенной волос, а также на слизистых оболочках на прикосновение реагиру­ют специальные рецепторные клетки (тельца Мейснера), распо­ложенные в сосочковом слое кожи. На коже, покрытой волосами, на прикосновение реагируют рецепторы волосяного фолликула, обладающие умеренной адаптацией. На давление реагируют рецепторные образования (диски Меркеля), расположенные небольшими группами в глубоких слоях кожи и слизистых оболочек. Это медленно адаптирующиеся рецепторы. Адекватным для них служит прогибание эпи­дермиса при действии механического стимула на кожу. Вибрацию воспринимают тельца Пачини, располагающиеся как в слизистой, так и на не покрытых волосами частях кожи, в жировой ткани подкожных слоев, а также в суставных сумках, сухо­жилиях. Тельца Пачини обладают очень быстрой адаптацией и реагируют на ускорение при смещении кожи в результате действия механи­ческих стимулов, одновременно вовлекаются в реакцию несколь­ко телец Пачини. Щекотание воспринимают свободно лежащие, неинкапсулиро­ванные нервные окончания, расположенные в поверхностных сло­ях кожи.

Кожные рецепторы: 1 - тельце Мейснера; 2 - диски Меркеля; 3 - тельце Паччини; 4 - рецептор волосяного фолликула; 5 - тактильный диск (тельце Пинкуса-Игго); 6 - окончание Руффини

Каждому виду чувствительности соответствуют особые рецепторные образования, которые делят на четыре группы: тактильные, тепловые, холодовые и болевые. Количество различного типа рецепторов, приходящихся на единицу поверхности, неодинаково. В среднем на 1 квадратный сантиметр кожной поверхности приходится 50 болевых, 25 тактильных, 12 холодовых и 2 тепловые точки. Рецепторы кожи локализуются на разной глубине, так, например, холодовые рецепторы располагаются ближе к поверхности кожи (на глубине0,17 мм), чем тепловые, расположенные на глубине 0,3 –0,6 мм.

Абсолютная специфичность, т.е. способность реагировать только на какой-то один вид раздражения, характерна лишь для некоторых рецепторных образований кожи. Многие из них реагируют на раздражители разной модальности. Возникновение различных ощущений зависит не только от того, какое рецепторное образование кожи подверглось раздражению, но и от характера импульсации, идущей от этого рецептора в .

Чувство осязания (прикосновения) возникает при легком надавливании на кожу, при соприкосновении кожной поверхности с окружающими предметами, оно дает возможность судить об их свойствах и ориентироваться во внешней среде. Оно воспринимается осязательными тельцами, количество которых на различных участках кожи неодинаково. Дополнительным рецептором осязания являются нервные волокна, оплетающие волосяной фолликул (так называемая волосковая чувствительность). Чувство глубокого давления воспринимается пластинчатыми тельцами.

Боль воспринимается главным образом свободными нервными окончаниями, расположенными как в эпидермисе, так и в дерме.

Терморецептор – чувствительное нервное окончание, реагирующее на изменения температуры окружающей среды, а при глубоком расположении – на изменения температуры тела. Температурное чувство, восприятие тепла и холода, имеет большое значение для рефлекторных процессов, регулирующих температуру тела. Предполагают, что тепловые раздражения воспринимаются тельцами Руффини, а холодовые – концевыми колбами Краузе. Холодовых точек на всей поверхности кожи значительно больше, чем тепловых.

Рецепторы кожи

  • Болевые рецепторы.
  • Тельца Пачини - капсулированные рецепторы давления в округлой многослойной капсуле. Располагаются в подкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент начала воздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, то есть представляют грубую чувствительность.
  • Тельца Мейснера - рецепторы давления, расположенные в дерме. Представляют собой слоистую структуру с нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малыми рецептивными полями, то есть представляют тонкую чувствительность.
  • Диски Меркеля - некапсулированные рецепторы давления. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями.
  • Рецепторы волосяных луковиц - реагируют на отклонение волоса.
  • Окончания Руффини - рецепторы растяжения. Являются медленноадаптирующимися, обладают большими рецептивными полями.

Схематический разрез кожи: 1 - роговичный слой; 2 - чистый слой; 3 - гранулезный слой; 4 - базальный слой; 5 - мышца, выпрямляющая сосочек; 6 - дерма; 7 - гиподерма; 8 - артерия; 9 - потовая железа; 10 - жировая ткань; 11 - волосяная луковица; 12 - вена; 13 - сальная железа; 14 - тельце Краузе; 15 - кожный сосочек; 16 - волос; 17 - потовая пора

Основные функции кожи : Защитная функция кожи представляет собой защиту кожи от механических внешних воздействий: давления, ушибов, разрывов, растяжения, радиационного облучения, химических раздражителей; Иммунная функция кожи. Присутствующие в коже Т-лимфоциты распознают экзогенные и эндогенные антигены; клетки Ларгенганса доставляют антигены в лимфатические узлы, где они нейтрализуются; Рецепторная функция кожи – способность кожи воспринимать болевое, тактильное и температурное раздражение; Терморегулирующая функция кожи заключается в её способности поглощать и выделять тепло; Обменная функция кожи объединяет собой группу частных функций: секреторную, экскреторную, резорбционную и дыхательную активность. Резорбционная функция – способность кожи поглощать различные вещества, в том числе лекарственные; Секреторная функция осуществляется сальными и потовыми железами кожи, выделяющими сало и пот, которые, смешиваясь, образуют на поверхности кожи тонкую пленку водно-жировой эмульсии; Дыхательная функция – способность кожи поглощать и выделять углекислый газ, которая усиливается при повышении температуры окружающей среды, во время физической работы, при пищеварении, развитии в коже воспалительных процессов.

(прикосновение)

После того как я описал структуру и строение нервной системы, настало время подумать, как же работает эта система. Очень легко видеть, что для того, чтобы нервная система могла управлять действиями организма с пользой для последнего, она должна постоянно оценивать детали окружающей среды. Бесполезно быстро опускать голову, если ей не грозит столкновение с каким-то предметом. С другой стороны, очень опасно не сделать этого, если такая угроза существует.

Для того чтобы иметь представление о состоянии окружающей среды, надо ее ощущать или воспринимать. Организм ощущает окружающую среду путем взаимодействия специализированных нервных окончаний с теми или иными факторами среды. Взаимодействие интерпретируется центральной нервной системой способами, которые отличаются друг от друга в зависимости от природы воспринимающих нервных окончаний. Каждая форма взаимодействия и интерпретации выделяется в виде особого вида сенсорного (чувственного) восприятия.

В обыденной речи мы обычно различаем пять чувств - зрение, слух, вкус, обоняние и тактильную чувствительность, или ощущение прикосновения. Мы располагаем отдельными органами, каждый из которых отвечает за один из видов восприятия. Образы мы воспринимаем с помощью глаз, слуховые стимулы с помощью ушей, запахи достигают нашего сознания через нос, вкус мы ощущаем языком. Эти ощущения мы можем сгруппировать в один класс и назвать специализированными ощущениями, так как каждое из них требует участия особого (то есть специального) органа.

Для восприятия тактильных ощущений не требуется никакого особого органа. Нервные окончания, воспринимающие прикосновения, рассеяны по всей поверхности тела. Осязание - это пример общего ощущения.

Мы довольно плохо дифференцируем ощущения, восприятие которых не требует участия специальных органов, и поэтому говорим о прикосновении как о единственном ощущении, которое мы воспринимаем кожей. Например, мы часто говорим, что какой-то предмет «горяч на ощупь», хотя в действительности прикосновение и воздействие температуры воспринимаются разными нервными окончаниями. Способность воспринимать прикосновение, давление, жар, холод и боль объединяется общим термином - кожная чувствительность, так как нервные окончания, которыми мы воспринимаем эти раздражения, находятся в коже. Эти нервные окончания называются также экстероцепторами (от латинского слова «экстра», что означает «снаружи»). Экстероцепция существует также внутри организма, так как окончания, расположенные в стенке желудочно-кишечного тракта, по сути, являются экстероцепторами, поскольку этот тракт сообщается с окружающей средой посредством рта и заднего прохода. Можно было бы считать ощущения, возникающие в результате раздражения этих окончаний, разновидностью внешней чувствительности, но ее выделяют в особый вид, называемый интероцепцией (от латинского слова «интра» - «внутри»), или висцеральной чувствительностью.

Наконец, существуют нервные окончания, передающие сигналы от органов самого тела - от мышц, сухожилий, связок суставов и тому подобного. Такая чувствительность называется проприоцептивной («проприус» па латинском языке означает «собственный»). Мы меньше всего осознаем именно проприоцептивную чувствительность, воспринимая результаты ее работы как нечто само собой разумеющееся. Проприоцептивную чувствительность реализуют специфические нервные окончания, находящиеся в различных органах. Для наглядности можно упомянуть о нервных окончаниях, расположенных в мышцах, в так называемых специализированных мышечных волокнах. При растяжении или сокращении этих волокон в нервных окончаниях возникают импульсы, которые передаются по нервам в спинной мозг, а потом, по восходящим трактам, в ствол головного мозга. Чем больше степень растяжения или сокращения волокна, тем больше порождается импульсов в единицу времени. Другие нервные окончания реагируют на давление в ступнях при стоянии или в ягодичных мышцах при сидении. Есть и другие разновидности нервных окончаний, реагирующих на степень напряжения в связках, на угол взаимного расположения костей, соединенных в суставах, и так далее.

Нижние отделы мозга обрабатывают поступающие сигналы от всех частей тела и используют эту информацию для координации и организации движений мышц, призванных сохранять равновесие, менять неудобное положение тела и приспосабливаться к внешним условиям. Хотя обычная работа организма по координации движений во время стояния, сидения, ходьбы или бега ускользает от нашего сознания, определенные ощущения иногда достигают коры большого мозга, и благодаря им мы в любой момент времени отдаем себе отчет в относительном положении частей нашего тела. Мы, не глядя, точно знаем, где и как расположен наш локоть или большой палец ноги, и с закрытыми глазами можем прикоснуться к любой названной нам части тела. Если кто-то согнет нашу руку в локте, мы точно знаем, в какое положение переведена наша конечность, и для этого нам не надо на нее смотреть. Для того чтобы это делать, нам необходимо постоянно интерпретировать бесчисленные сочетания нервных импульсов, поступающих в мозг от растянутых или изогнутых мышц, связок и сухожилий.

Различные проприоцептивные восприятия иногда объединяются общим названием позиционного чувства, или чувства положения. Часто это чувство называется кинестетическим (от греческих слов, обозначающих «чувство движения»). Неизвестно, в какой степени это чувство зависит от взаимодействия сил, развиваемых мышцами, с силой гравитации. Этот вопрос стал особенно актуальным для биологов в последнее время, в связи с развитием космонавтики. Во время длительных космических полетов космонавты долгое время пребывают в состоянии невесомости, когда проприоцептивная чувствительность лишена сигналов о привычном воздействии гравитации.

Что же касается экстероцептивной чувствительности, воспринимающей такие модальности, как прикосновение, давление, жар, холод и боль, то она опосредуется нервными импульсами, которые генерируются в нервных окончаниях определенного типа для каждого вида чувствительности. Для восприятия всех видов раздражителей, кроме болевых, нервные окончания обладают определенными структурами, которые называются по именам ученых, впервые описавших эти структуры.

Так, тактильные рецепторы (то есть структуры, воспринимающие прикосновения) часто заканчиваются тельцами Мейсснера, которые были описаны немецким анатомом Георгом Мейсснером в 1853 году. Рецепторы, воспринимающие холод, называются колбочками Краузе, по имени впервые описавшего в 1860 году эти структуры немецкого анатома Вильгельма Краузе. Тепловые рецепторы называются концевыми органами Руффини, по имени итальянского анатома Анджело Руффини, который описал их в 1898 году. Рецепторы давления называются тельцами Пачини, по имени итальянского анатома Филиппо Пачини, который описал их в 1830 году. Каждый из этих рецепторов легко отличить от прочих рецепторов по его морфологическому строению. (Однако болевые рецепторы представляют собой просто оголенные окончания нервных волокон, лишенных каких-либо структурных особенностей.)

Специализированные нервные окончания каждого типа приспособлены для восприятия только одного вида раздражения. Легкое прикосновение к коже в непосредственной близости от тактильного рецептора вызовет возникновение импульса в нем, но не вызовет никакой реакции в других рецепторах. Если же к коже прикоснуться теплым предметом, то на это отреагирует тепловой рецептор, а прочие не ответят никакой реакцией. В каждом случае нервные импульсы сами по себе идентичны в любом из этих нервов (действительно, импульсы идентичны во всех нервах), но их интерпретация в центральной нервной системе зависит от того, какой именно нерв передал тот или иной импульс. Например, импульс от теплового рецептора вызовет ощущение тепла вне зависимости от природы стимула. При стимуляции других рецепторов возникают также специфические ощущения, характерные только для данного вида рецепторов и не зависящие от природы стимула.

(Это верно и для специализированных органов чувств. Общеизвестен факт, что когда человек получает удар в глаз, то из него «сыплются искры», то есть головной мозг интерпретирует как свет любое раздражение зрительного нерва. Резкое надавливание на глаз также вызовет ощущение света. То же самое происходит при стимуляции языка слабым электрическим током. У человека при таком раздражении появляется некое вкусовое ощущение.)

Кожные рецепторы расположены не в каждом участке кожи, и там, где присутствует рецептор какого-либо типа, могут отсутствовать рецепторы других типов. Кожу можно картировать по различным видам чувствительности. Если мы воспользуемся тонким волоском, чтобы прикасаться к различным участкам кожи, то обнаружим, что в некоторых местах человек воспринимает прикосновение, а в некоторых - нет. Затратив еще немного труда, мы можем подобным же образом картировать кожу по тепловой и холодовой чувствительности. Промежутки между рецепторами невелики, и поэтому в обыденной жизни мы практически всегда отвечаем на стимулы, которые раздражают нашу кожу. Всего в коже расположены 200 000 нервных окончаний, реагирующих на температуру, полмиллиона рецепторов, реагирующих на прикосновение и давление, и около трех миллионов болевых рецепторов.

Как и следует ожидать, тактильные рецепторы наиболее густо расположены в языке и в кончиках пальцев, то есть в тех местах, которые самой природой предназначены для исследования свойств окружающего мира. Язык и кончики пальцев лишены волосяного покрова, но в других участках кожи тактильные рецепторы связаны с волосами. Волосы - мертвые структуры, полностью лишенные чувствительности, но все мы хорошо знаем, что человек ощущает любое, даже легчайшее прикосновение к волосам. Очевидный парадокс объясняется очень просто, если мы поймем, что при прикосновении к волосу он сгибается и, как рычаг, оказывает давление на расположенный рядом с ним участок кожи. Таким образом, происходит стимуляция тактильных рецепторов, расположенных в непосредственной близости от корня волоса.

Это очень полезное свойство, так как оно позволяет нам чувствовать прикосновение без прямого контакта кожи с инородным предметом. Ночью мы можем определить местонахождение неодушевленного предмета (который мы не можем увидеть, услышать или учуять), если коснемся его нашими волосами. (Существует еще способность к эхолокации, которую мы вскоре будем обсуждать.)

Некоторые ночные животные доводят до совершенства свою «волосяную чувствительность». Самый знакомый пример - семейство кошачьих, к которым относятся известные всем домашние кошки. У этих животных есть усы, которые зоологи называют вибриссами. Это длинные волосы, они касаются предметов на довольно большом удалении от поверхности тела. Волосы довольно жесткие, поэтому физическое воздействие передается к коже без затухания, то есть с минимальными потерями. Вибриссы расположены вблизи пасти, где концентрация тактильных рецепторов очень высока. Таким образом омертвевшие структуры, нечувствительные сами по себе, стали чрезвычайно тонкими органами восприятия тактильных стимулов.

Если прикосновение становится более интенсивным, то оно начинает стимулировать тельца Пачини в нервных окончаниях, воспринимающих давление. В отличие от тактильных рецепторов, расположенных на поверхности кожи, органы восприятия давления локализованы в подкожных тканях. Между этими нервными окончаниями и окружающей средой находится довольно толстый слой ткани, и воздействие должно быть сильнее, чтобы преодолеть смягчающее воздействие этой предохраняющей подушки.

С другой стороны, если прикосновение длится достаточно долго, то нервные окончания тактильных рецепторов становятся все менее и менее чувствительными и, в конце концов, перестают реагировать на прикосновение. То есть вы осознаете прикосновение в самом его начале, но если его интенсивность остается неизменной, то ощущение прикосновения исчезает. Это разумное решение, потому что в противном случае мы постоянно ощущали бы прикосновение к коже одежды и множества других предметов, и эти ощущения загрузили бы наш головной мозг массой ненужной и бесполезной информации. В этом отношении подобным образом ведут себя и температурные рецепторы. Например, вода в ванне кажется нам очень горячей, когда мы ложимся в нее, но потом, по мере того как мы «привыкаем» к ней, она становится приятно теплой. Точно так же холодная озерная вода становится приятно прохладной через некоторое время после того, как мы в нее ныряем. Активирующая ретикулярная формация блокирует поток импульсов, которые несут бесполезную или незначимую информацию, освобождая головной мозг для более важных и насущных дел.

Для того чтобы ощущение прикосновения воспринималось длительно, необходимо, чтобы его характеристики постоянно менялись во времени и чтобы в него все время вовлекались новые рецепторы. Таким образом, прикосновение превращается в щекотку или ласку. Таламус способен до некоторой степени локализовать такие ощущения, но для точного определения места прикосновения в игру должна включиться кора большого мозга. Такое тонкое различение выполняется в сенсорной области коры. Так, когда нам на кожу садится комар, точный удар следует немедленно, даже без взгляда па несчастное насекомое. Точность пространственного различения варьируется в зависимости от места на коже. Мы воспринимаем как раздельные прикосновения к двум точкам на языке, удаленным друг от друга на расстояние 1,1 мм. Для того чтобы два прикосновения воспринимались как раздельные, расстояние между стимулируемыми точками на пальцах должно быть не менее 2,3 мм. В носу такое расстояние достигает 6,6 мм. Однако стоит сравнить эти данные с данными, полученными для кожи спины. Там два прикосновения воспринимаются как раздельные, если расстояние между ними превышает 67 мм.

При интерпретации ощущений центральная нервная система не просто дифференцирует один тип ощущений от другого или одно место раздражения от другого. Она также определяет интенсивность раздражения. Например, мы легко определяем, какой из двух предметов тяжелее, если возьмем по одному в каждую руку, даже если эти предметы похожи по объему и форме. Более тяжелый предмет сильнее давит на кожу, сильнее возбуждает рецепторы давления, которые в ответ разряжаются более частыми залпами импульсов. Мы можем также взвесить эти предметы, поочередно перемещая их вверх и вниз. Более тяжелый предмет требует большего мышечного усилия для преодоления силы тяжести при движениях одной и той же амплитуды, и наше проприоцептивное чувство скажет нам, какая из рук развивает большее усилие при поднятии своего предмета. (То же самое касается и других чувств. Мы различаем степень тепла или холода, интенсивности боли, яркости света, громкости звука и силы запаха или вкуса.)

Очевидно, что существует некий порог различения. Если один предмет весит 9 унций, а другой 18, то мы легко определим эту разницу даже с закрытыми глазами, просто взвесив эти предметы на ладонях рук. Если один предмет весит 9 унций, а другой 10, то нам придется «покачать» предметы на руках, но в конце концов верный ответ будет все же найден. Однако если один предмет весит 9 унций, а другой 9,5 унций, то определить разницу, скорее всего, не удастся. Человек будет колебаться, и его ответ может с равной долей вероятности оказаться как верным, так и ошибочным. Способность различать силу стимулов лежит не в абсолютной их разнице, а в относительной. Роль в различении предметов весом 9 и 10 унций соответственно играет разница в 10 %, а не абсолютная разница в одну унцию. Например, мы не сможем определить разницу между предметами весом в 90 и 91 унцию, хотя разница в весе составляет ту же самую одну унцию. Зато мы легко уловим разницу между предметами весом 90 и 100 унций. Однако нам будет довольно просто определить разницу между весами предметов, если один из них весит одну унцию, а другой одну унцию с четвертью, хотя разница между этими величинами намного меньше одной унции.

По-иному то же самое можно сказать так: организм оценивает разницу в интенсивности любых сенсорных стимулов по логарифмической шкале. Этот закон называется законом Вебера - Фехнера, по именам двух немецких ученых - Эрнста Генриха Вебера и Густава Теодора Фехнера, которые его открыли. Функционируя таким образом, органы чувств способны обработать больший диапазон интенсивностей стимулов, чем это было бы возможно при линейном их восприятии. Предположим, например, что какое-то нервное окончание может при максимальном воздействии разряжаться в двадцать раз чаще, чем при минимальном. (При уровне раздражения выше максимального наступает повреждение нерва, а при уровне ниже минимального ответ попросту отсутствует.) Если бы нервное окончание реагировало на раздражение по линейной шкале, то максимальный стимул мог бы быть всего в двадцать раз сильнее минимального. При использовании же логарифмической шкалы - даже если взять 2 за основание логарифма - максимальная частота разрядов с нервного окончания будет достигнута, если максимальный стимул будет в два в двадцатой степени раз выше, чем минимальный. Это число приблизительно равно миллиону.

Именно благодаря тому, что нервная система работает согласно закону Вебера -Фехнера, мы способны слышать гром и шорох листвы, видеть солнце и едва заметные звезды.

Тельца Мейсснера , расположенные в поверхностных слоях собственно кожи (дермы) губ и собственно слизистой оболочки рта, реагируют на прикосновение. При усилении механического раздражения возбуждаются диски Меркеля , которые локализуются в глубоких слоях кожного эпидермиса и слизистого эпителия. Ощущения давления и вибрации возникают при раздражении телец Пачини , расположенных в подкожной клетчатке и подслизистом слое. В связи с глубоким залеганием телец Пачини, местная апликационная анестезия поверхностных слоев слизистой оболочки и кожи не устраняет ощущения давления и вибрации, о чем необходимо предупредить пациента перед операцией в этих условиях.

От большинства тактильных механорецепторов ротового отдела сенсорные сигналы поступают в ЦНС по миелинизированным нервным волокнам Аb со скоростью 30-70 м/с. Центральный отдел тактильной сенсорной системы располагается в задней центральной извилине коры больших полушарий.

Тактильные ощущения можно вызвать раздражением только определенных участков кожи и слизистых, которые называются чувствительными тактильными точками . Пространственный порог тактильной чувствительности обратно пропорционален количеству рецепторов на единицу площади и прямо пропорционален расстоянию между рецепторами. Пространственный порог тактильных ощущений на кончиках пальцев, языка и губ, значительно ниже (1-3 мм), чем на других участках тела (50-100 мм). Это обусловлено различием плотности рецепторов на единицу поверхности.

Наиболее плотно тактильные рецепторы расположены на кончике языка, слизистой оболочке и красной кайме губ, что необходимо для апробации пищи на съедобность. Наиболее чувствительна к механическим раздражениям верхняя губа. Относительно высоким уровнем тактильной чувствительности отличается слизистая оболочка твердого неба, что обеспечивает формирования пищевого комка в процессе жевания. Наименьшей тактильной чувствительностью обладает слизистая оболочка вестибулярной поверхности десен. При этом в области десневых сосочков отмечается убывающий градиент чувствительности от резцов к молярам.

Метод исследования абсолютных или пространственных порогов тактильной чувствительности, называют эстезиометрией . Изучение тактильного восприятия слизистой оболочкой полости рта позволяет прогнозировать индивидуальные особенности адаптации к съемным зубным протезам у больных с частичной или полной адентией. Протез является инородным телом, раздражающим тактильные рецепторы, что ведет к рефлекторной гиперсаливации, возникновению рвотного рефлекса, нарушению координации жевания, глотания и речи. Однако большинство тактильных рецепторов относится к быстроадаптирующимся. В связи с этим, а также вследствие отсутствия неадаптирующихся тактильных рецепторов, существенных проблем с привыканием к зубным протезам, как правило, не возникает. При этом наряду с приспособлением рецепторного аппарата происходит адаптация проводникового и центрального отделов анализатора. Это является результатом высокой пластичности нервных центров, обеспечивающих быстрое приспособление функций жевания, глотания и речи к новым условиям. Зубной протез перестает ощущаться как инородное тело, наблюдается восстановление эффективности жевания, угасает рвотный рефлекс, нормализуются саливация, глотание и речь.


Температурная рецепция в ротовом отделе обеспечивает восприятие термических раздражителей - тепла и холода. Терморецепторы, воспринимающие холод, гистологически представлены колбами Краузе, расположенными в эпидермисе красной каймы губ и эпителии слизистой оболочки рта. Тепловые рецепторы – тельца Руффини, локализуются глубже - в собственно дермальном слое губ и в собственно слизистой оболочке рта. От рецепторов холода отходят тонкие миелинизированные волокна типа Аd со скоростью проведения возбуждения 5-15 м/с, а от рецепторов тепла – безмиелиновые волокна типа С (0,5-3 м/с). Центральный отдел температурной сенсорной системы располагается в задней центральной извилине коры больших полушарий.

Как правило, тепловые и холодовые рецепторы возбуждаются соответствующими по качеству стимулами. Однако в определенных условиях холодовые рецепторы могут воспринимать тепловые раздражители при температуре свыше 45 0 С (например, при погружении в горячую ванну). В зависимости от исходных условий, одна и та же температура может вызывать и ощущение тепла и ощущение холода.

Преобладание в коже и слизистых терморецепторов, реагирующие на холодовые стимулы (10:1), и глубокое залегание тепловых рецепторов, обусловливают более высокую чувствительность к холоду. При этом холодовая чувствительность снижается от передних отделов рта к задним, а тепловая, наоборот, повышается. Наибольшей чувствительностью к температурным раздражениям отличаются кончик языка и красная кайма губ, что обеспечивает апробацию пригодности потребляемой пищи. Малочувствительна к холоду и теплу слизистая оболочка щек. Полностью отсутствует восприятие тепла в центре твердого неба, а центральная часть задней поверхности языка не воспринимает ни тепловые ни холодовые воздействия.

Способностью к восприятию температуры обладают рецепторы дентина и пульпы зубов. Порог холодовой чувствительности для резцов в среднем составляет 20 0 С, а для клыков, премоляров и моляров – 11-13 0 С. Порогом тепловой чувствительности для резцов является температура около 52 0 С, для остальных зубов – 60-70 0 С.

Исследование температурной чувствительности путем определения тепловых или холодовых порогов называют термоэстезиометрией . Для исследования температурной чувствительности зубов их орошают горячей или, чаще, холодной водой либо используют ватный тампон, смоченный в эфире, который, испаряясь, охлаждает зуб. Если температурные раздражители вызывают адекватные ощущения тепла или холода, это свидетельствует о нормальном состоянии тканей зуба. При кариесе холодовое раздражение вызывает боль. При пульпите боль вызывают тепловые стимулы, а холодовые, наоборот, уменьшают ее. Депульпированный зуб не реагирует ни на холод, ни на тепло.

Тактильная и температурная чувствительностьротового отделадополняетсямышечно–суставной рецепцией , которая обеспечивает чувство пространственного положения нижней челюсти относительно верхней, ощущение ее движения, восприятие сократительного усилия мышц. Этот вид чувствительности обеспечивается проприорецепторами , которые локализуются в интрафузальных мышечных волокнах, височно-нижнечелюстных суставах, в связочном аппарате жевательных и мимических мышц. Сенсорные сигналы от проприорецепторов поступают в ЦНС преимущественно по толстым миелинизированным нервным волокнам типа Аa со скоростью 70-120 м/с. Центральный отдел проприоцептивной сенсорной системы располагается в задней центральной извилине коры больших полушарий.

Важнейшей сенсорной функцией ротового отдела является болевая рецепция , которая обеспечивает восприятие стимулов, способных привести к повреждению или разрушающих ткани организма. В отличие от всех других видов сенсорных модальностей болевая рецепция не имеет адекватного раздражителя. Практически любой сверхсильный стимул может вызывать ощущение боли.

Боль - это универсальное неприятное сенсорное ощущение и эмоциональное переживание, связанное с угрозой разрушения или уже произошедшим повреждением ткани.

В соответствии с биологической значимостью различают два вида боли: физиологическую и патологическую . Основные задачи физиологической боли:

1) информирование организма о любых формах угрозы его существованию или целостности,

2) участие в организации адаптивного поведения, направленного на предупреждение распространения и ликвидацию повреждения или устранение его угрозы.

Боль обеспечивает мобилизацию большинства систем организма для защиты от повреждения тканей и сопровождается развертыванием оборонительного поведения. В зависимости от ситуации ощущение боли и сопровождающие ее поведенческие и рефлекторные реакции могут сознательно подавляться. Однако, гуморальные, а также вегетативные сдвиги сохраняются в любом случае, что является неизбежным признаком повреждения тканей. Поэтому при купировании болевых синдромов целесообразно использовать лекарственные препараты, способные стабилизировать физиологические функции организма.

После организации защитного поведения боль утрачивает свои адаптивные функции и приобретают значение самостоятельного патогенетического фактора. Для многих заболеваний боль – одно из первых, а иногда и единственное проявление патологии и главный диагностический индикатор.

По месту приложения повреждающего фактора выделяют два рода боли: соматическую и висцеральную . Соматическая боль связана с экстремальными внешними воздействиями, а висцеральная обусловлена внутренними патологическими процессами.

Соматическая боль подразделяется на два типа: первичную и вторичную . Первичная (эпикритическая ) боль проявляется сразу после повреждения, быстро осознается, легко детерминируется по качеству и локализации, исчезает после прекращения вредоносной стимуляции, сопровождается адаптацией. Вторичная (протопатическая ) боль проявляется через 0,5-1 с после первичного ощущения, медленно осознается, плохо детерминируется по качеству и локализации, сохраняется длительное время после прекращения стимуляции, не сопровождается адаптацией.

В настоящее время имеется три основных теории механизмов восприятия боли:

1) теория интенсивности,

2) теория специфичности,

3) теория распределения импульсов.

Согласно теории интенсивности сверхсильная стимуляция рецепторов, независимо от их модальности, вызывает высокоамплитудные РП и высокочастотную разрядную деятельность сенсорных нейронов, которая трасформируется ЦНС в ощущение боли (амплитудно-частотное кодирование).

Согласно теории распределения импульсов повреждающие стимулы вызывают особый порядок следования (паттерн) афферентных импульсов, который отличается от разрядной деятельности, вызванной индифферентными для организма факторами (интервально-импульсное кодирование). При этом ЦНС преобразует поступающий афферентный поток в ощущение боли.

В противоположность этому теория специфичности предполагает (по аналогии с другими сенсорными системами) существование специальных рецепторов и афферентов, реагирующих возбуждением только на такие по интенсивности стимулы, которые могут повредить ткань (двоичное и пространственное кодирование).

Таким образом, раздражитель может вызвать ощущение боли только в том случае, если под его влиянием формируется особая, алгогенная сигнализация - поток афферентных возбуждений, в котором по амплитудно-частотно-пространственному принципу закодирована информация об угрозе разрушения или уже произошедшим повреждении тканей организма.

Сенсорная система, обеспечивающая восприятие вредоносных раздражителей, называется ноцицептивной . Рецепторы этой системы – ноцицепторы , подразделяются на четыре вида:

1) механочувствительные, которые возбуждаются в результате механического смещения рецепторной мембраны,

2) хемочувствительные, реагирующие на химические вещества, которые выделяются поврежденными клетками (ацетилхолин, гистамин, серотонин, простагландины),

3) термочувствительные, которые активируются под влиянием термических стимулов, выходящих за пределы физиологического диапазона,

4) полимодальные, реагирующие как на химические вещества, так и на интенсивные механические и термические стимулы.

Ноцицепторы относятся к неадаптирующимся, высокопороговым рецепторам. В коже лица и слизистой оболочки рта, а также периодонте, пульпе и дентине зубов они преимущественно представлены свободными нервными окончаниями.

Выраженной болевой чувствительностью отличается слизистая оболочка вестибулярной поверхности нижней челюсти в области боковых резцов. Наименьшей болевой чувствительностью характеризуется язычная поверхность слизистой оболочки десен. На внутренней поверхности щеки в области верхних моляров имеется узкий участок слизистой, абсолютно лишенный болевой чувствительности.

Исключительно сильное болевое ощущение возникает даже при легком прикосновении к пульпе зуба, что обусловлено высокой плотностью высокочувствительных нервных окончаний и волокон, которые проникают в дентин вплоть до эмалево-дентинной границы. На 1 см 2 дентина приходится 15000-30000 болевых рецепторов, на границе эмали и дентина количество ноцицепторов доходит до 75000, тогда как в коже их число не превышает 200. Все это является причиной особой жестокости боли, возникающей под влиянием температурных, химических и механических раздражителей при повреждении и разрушении тканей зубов, в том числе и при их лечении.

Сенсорные сигналы от ноцицепторов ротового отдела поступают в ЦНС по миелинизированным нервным волокнам типов Аb и Аd, а также по безмиелиновым волокнам группы С, большинство которых проходит в составе второй и третей ветви тройничного нерва. Информация от ноцицепторов о неблагополучии тканей ротового отдела поступает в заднюю центральную извилину и к медиальным отделам орбитальной коры больших полушарий.

Тесная взаимосвязь между различными ядрами тройничного нерва и их взаимодействие с ядрами ретикулярной формации обусловливает широкую иррадиацию возбуждения, затрудняющую локализацию зубной боли и ее отражение (проецирование) в достаточно отдаленные участки лица, головы и шеи.

Иногда после операции удаления пораженного зуба сохраняется ощущение боли, которая называется фантомной . Фантомные боли обусловлены тем, что предшествующая удалению ноцицептивная афферентация от пораженного зуба вызывает нейрогенную (центральную ) сенситизацию - увеличение чувствительности, связанное с повышением возбудимости в проводниковом и центральном отделах ноцицептивной системы. Дополнительное раздражение во время операции вызывает появление стойких патологически усиленных очагов циркуляции возбуждения в ЦНС, которое воспринимается клетками коры мозга как длительные, часто непрерывные боли. Лечебные мероприятия местного характера не приводят к уменьшению или прекращению таких болей, так как их источник лежит в структурах ЦНС, на которые следует воздействовать, активируя антиноцицептивную систему мозга.

Основные функции эндогенной антиноцицептианой системы – ограничение уровня болевого возбуждения, а также регуляция и поддержание порога болевой чувствительности. Это обеспечивается за счет механизмов пресинаптического и постсинаптического торможения ноцицептивных нейронов на всех уровнях ЦНС. В реализации влияния антиноцицептивной системы участвуют опиатные, адренергические, дофаминергические и серотонинергические структуры мозга. Ведущее значение при этом имеет выработка опиатных морфиноподобных соединений – эндорфинов, энкефалинов и динарфинов.

Болевой порог является результатом взаимодействия ноцицептивной и антиноцицептивной системы, которая находится в состоянии постоянной тонической активности. Устранение постоянного тормозного влияния антиноцицептивной системы может привести к состоянию гипералгии или даже возникновению самопроизвольных болевых ощущений. Повышение тонической активности антиноцицептивной системы приводит к развитию врожденных аналгий – нечувствительности к боли.

Страх, подавляя активность антиноцицептивной системы, резко усиливает реакцию на боль, снижают порог болевой чувствительности, а состояния типа агрессии-ярости, напротив, увеличивают его. Переоценка интенсивности боли может быть связана с подготовкой и ожиданием медицинских манипуляций. Однако болевая чувствительность снижается, когда человек заранее предупрежден о характере предстоящего воздействия. Разъяснение или отвлекающие беседы перед операцией существенно ослабляет болевые ощущения и снижают потребность в обезболивающих средствах.

Специфической особенностью сенсорной функции ротового отдела является вкусовая чувствительность .

Вкус – ощущение, возникающее в результате восприятия четырех элементарных вкусовых качеств химических веществ, растворенных в ротовой жидкости – сладкого , горького , кислого и соленого .

Сенсорная система, которая осуществляет контактное восприятие и оценку вкусовых свойств химических веществ, действующих на орган вкуса , называется вкусовым анализатором .

Орган вкусачеловека представлен вкусовыми почками которые локализуются, преимущественно, в сосочках языка : грибовидных , листовидных и желобовидных . Грибовидные сосочки располагаются, главным образом, на слизистой кончика языка, листовидные сосочки - вдоль боковой поверхности задних отделов языка, а желобовидные – поперек спинки, у корня языка. Отдельные вкусовые почки имеются на мягком и твердом небе, задней стенке глотки, миндалинах, надгортаннике и гортани.