Окружающий мир пребывает в постоянном движении. Любое тело (объект) способно выполнить определенную работу, даже если оно в состоянии покоя. Но для совершения любого процесса требуется приложить некоторые усилия , порой немалые.

В переводе с греческого языка этот термин означает «деятельность», «сила», «мощь». Все процессы на Земле и за пределами нашей планеты происходят благодаря этой силе, которой обладают окружающие объекты, тела, предметы.

Вконтакте

Среди большого разнообразия выделяют несколько основных видов данной силы, отличающихся прежде всего своими источниками:

  • механическая – данный вид характерен для движущихся в вертикальной, горизонтальной или другой плоскости тел;
  • тепловая – выделяется в результате неупорядоченного молекул в веществах;
  • – источником этого вида является движение заряженных частиц в проводниках и полупроводниках;
  • световая – переносчиком ее являются частицы света – фотоны;
  • ядерная – возникает вследствие самопроизвольного цепного деления ядер атомов тяжелых элементов.

В этой статье пойдет речь о том, что собой представляет механическая сила предметов, из чего она состоит, от чего зависит и как преобразуется во время различных процессов.

Благодаря этому виду предметы, тела могут находиться в движении либо в состоянии покоя. Возможность такой деятельности объясняется присутствием двух основных составляющих:

  • кинетической (Ек);
  • потенциальной (Еп).

Именно сумма кинетической и потенциальной энергий определяет общий численный показатель всей системы. Теперь о том, какие формулы используются для расчетов каждой из них, и в чем измеряется энергия.

Как рассчитать энергию

Кинетическая энергия – это характеристика любой системы, которая находится в движении . Но как найти кинетическую энергию?

Сделать это несложно, так как расчетная формула кинетической энергии весьма проста:

Конкретное значение определяется двумя основными параметрами: скоростью перемещения тела (V) и его массой (m). Чем больше данные характеристики, тем большей значением описываемого явления обладает система.

Но если объектом не совершаются перемещения (т.е. v = 0), то и кинетическая энергия равна нулю.

Потенциальная энергияэто характеристика, зависящая от положения и координат тел .

Любое тело подвержено земному притяжению и воздействию сил упругости. Такое взаимодействие объектов между собой наблюдается повсеместно, поэтому тела находятся в постоянном движении, меняют свои координаты.

Установлено, чем выше от поверхности земли находится предмет, чем больше его масса, тем большим показателем данной величины оно обладает .

Таким образом, зависит потенциальная энергия от массы (m) , высоты (h). Величина g – ускорение свободного падения, равное 9,81 м/сек2. Функция расчета ее количественного значения выглядит так:

Единицей измерения этой физической величины в системе СИ считается джоуль (1 Дж) . Именно столько нужно затратить сил, чтобы переместить тело на 1 метр, приложив при этом усилие в 1 ньютон.

Важно! Джоуль как единица измерения утвержден на Международном конгрессе электриков, который проходил в 1889 году. До этого времени эталоном измерения была Британская термическая единица BTU, используемая в настоящее время для определения мощности тепловых установок.

Основы сохранения и превращения

Из основ физики известно, что суммарная сила любого объекта, независимо от времени и места его пребывания, всегда остается величиной постоянной, преобразуются лишь ее постоянные составляющие (Еп) и (Ек).

Переход потенциальной энергии в кинетическую и обратно происходит при определенных условиях.

Например, если предмет не перемещается, то его кинетическая энергия равна нулю, в его состоянии будет присутствовать только потенциальная составляющая.

И наоборот, чему равна потенциальная энергия объекта, например, когда он находится на поверхности (h=0)? Конечно, она нулевая, а Е тела будет состоять только из ее составляющей Ек.

Но потенциальная энергия – это мощность движения . Стоит только системе приподняться на какую- то высоту, после чего его Еп сразу начнет увеличиваться, а Ек на такую величину, соответственно, уменьшаться. Эта закономерность просматривается в вышеуказанных формулах (1) и (2).

Для наглядности приведем пример с камнем либо мячом, которые подбрасывают. В процессе полета каждый из них обладает и как потенциальной, так и кинетической составляющей. Если одна увеличивается, то другая на такую же величину уменьшается.

Полет предметов вверх продолжается лишь до тех пор, пока хватит запаса и сил у составляющей движения Ек. Как только она иссякла, начинается падение.

А вот чему равна потенциальная энергия предметов в самой верхней точке, догадаться нетрудно, она максимальная .

При их падении происходит все наоборот. При касании с землей уровень кинетической энергии равен максимуму.

Одной из характеристик любой системы является ее кинетическая и потенциальная энергия. Если какая-либо сила F оказывает действие на находящееся в покое тело таким образом, что последнее приходит в движение, то имеет место совершение работы dA. В этом случае значение кинетической энергии dT становится тем выше, чем больше совершено работы. Другими словами, можно написать равенство:

Учитывая путь dR, пройденный телом, и развиваемую скорость dV, воспользуемся вторым для силы:

Важный момент: данный закон можно использовать в том случае, если взята инерциальная система отсчета. Выбор системы влияет на значение энергии. В международной энергия измеряется в джоулях (дж).

Отсюда следует, что частицы или тела, характеризующейся скоростью перемещения V и массой m, составит:

T = ((V * V)*m) / 2

Можно сделать вывод, что кинетическая энергия определяется скоростью и массой, фактически представляя собой функцию движения.

Кинетическая и потенциальная энергия позволяют описать состояние тела. Если первая, как уже было сказано, непосредственно связана с движением, то вторая применяется в отношении системы взаимодействующих тел. Кинетическая и обычно рассматриваются для примеров, когда сила, связывающая тела, не зависит от В таком случае важны лишь начальное и конечное положения. Самый известный пример - гравитационное взаимодействие. А вот если важна и траектория, то сила является диссипативной (трение).

Говоря простым языком, потенциальная энергия представляет собой возможность совершить работу. Соответственно, эта энергия может быть рассмотрена в виде работы, которую нужно совершить для перемещения тела из одной точки в другую. То есть:

Если потенциальную энергию обозначить как dP, то получаем:

Отрицательное значение указывает, что выполнение работы происходит благодаря уменьшению dP. Для известной функции dP возможно определить не только модуль силы F, но и вектор ее направления.

Изменение кинетической энергии всегда связано с потенциальной. Это легко понять, если вспомнить системы. Суммарное значение T+dP при перемещении тела всегда остается неизменным. Таким образом, изменение T всегда происходит параллельно с изменением dP, они словно перетекают друг в друга, преобразовываясь.

Так как кинетическая и потенциальная энергия взаимосвязаны, их сумма представляет собой полную энергию рассматриваемой системы. В отношении молекул она является и присутствует всегда, пока есть хотя бы тепловое движение и взаимодействие.

При выполнении расчетов выбирается система отсчета и любой произвольный момент, взятый за начальный. Точно определить значение потенциальной энергии можно лишь в зоне действия таких сил, которые при совершении работы не зависят от траектории перемещения какой-либо частицы или тела. В физике такие силы получили название консервативных. Они всегда взаимосвязаны с законом сохранения полной энергии.

Интересный момент: в ситуации, когда внешние воздействия минимальны или нивелируются, любая изучаемая система всегда стремится к такому своему состоянию, когда ее потенциальная энергия стремится к нулю. К примеру, подброшенный мяч достигает предела своей потенциальной энергии в верхней точке траектории, но в то же мгновение начинает движение вниз, преобразуя накопленную энергию в движение, в выполняемую работу. Стоит еще раз обратить внимание, что для потенциальной энергии всегда имеет место взаимодействие как минимум двух тел: так, в примере с мячом на него оказывает влияние гравитация планеты. Кинетическая же энергия может быть рассчитана индивидуально для каждого движущегося тела.

Обозначающего «действие». Можно назвать энергичным человека, который двигается, создает определенную работу, может творить, действовать. Также энергией обладают машины, созданные людьми, живая и природа. Но это в обычной жизни. Помимо этого, есть строгая , определившая и обозначившая многие виды энергии – электрическую, магнитную, атомную и пр. Однако сейчас речь пойдет о потенциальной энергии, которую нельзя рассматривать в отрыве от кинетической.

Кинетическая энергия

Этой энергией, согласно представлениям механики обладают все тела, которые взаимодействуют друг с другом. И в данном случае речь идет о движении тел.

Потенциальная энергия

A=Fs=Fт*h=mgh, или Eп=mgh, где:
Eп - потенциальная энергия тела,
m - масса тела,
h - высота тела над поверхностью земли,
g - ускорение свободного падения.

Два вида потенциальной энергии

У потенциальной энергии различается два вида:

1. Энергия при взаимном расположении тел. Такой энергией обладает подвешенный камень. Интересно, но потенциальной энергией обладают и обычные дрова или уголь. В них содержится не окисленный углерод, который может окислиться. Если сказать проще, сгоревшие дрова потенциально могут нагреть воду.

2. Энергия упругой деформации. Для примера здесь можно привести эластичный жгут, сжатую пружину или система «кости-мышцы-связки».

Потенциальная и кинетическая энергия взаимосвязаны. Они могут переходит друг в друга. К примеру, если камень вверх, при движении сначала он обладает кинетической энергией. Когда он достигнет определенной точки, то на мгновение замрет и получит потенциальную энергию, а затем гравитация потянет его вниз и снова возникнет кинетическая энергия.

Кинети́ческая эне́ргия - скалярная функция , являющаяся мерой движения материальных точек , образующих рассматриваемую механическую систему , и зависящая только от масс и модулей скоростей этих точек . Для движения со скоростями значительно меньше скорости света кинетическая энергия записывается как

T = ∑ m i v i 2 2 {\displaystyle T=\sum {{m_{i}v_{i}^{2}} \over 2}} ,

где индекс i {\displaystyle \ i} нумерует материальные точки. Часто выделяют кинетическую энергию поступательного и вращательного движения . Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя ; таким образом, кинетическая энергия - часть полной энергии , обусловленная движением . Когда тело не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: T {\displaystyle T} , E k i n {\displaystyle E_{kin}} , K {\displaystyle K} и другие. В системе СИ она измеряется в джоулях (Дж).

История понятия

Кинетическая энергия в классической механике

Случай одной материальной точки

По определению, кинетической энергией материальной точки массой m {\displaystyle m} называется величина

T = m v 2 2 {\displaystyle T={{mv^{2}} \over 2}} ,

при этом предполагается, что скорость точки v {\displaystyle v} всегда значительно меньше скорости света . С использованием понятия импульса ( p → = m v → {\displaystyle {\vec {p}}=m{\vec {v}}} ) данное выражение примет вид T = p 2 / 2 m {\displaystyle \ T=p^{2}/2m} .

Если F → {\displaystyle {\vec {F}}} - равнодействующая всех сил , приложенных к точке, выражение второго закона Ньютона запишется как F → = m a → {\displaystyle {\vec {F}}=m{\vec {a}}} . Скалярно умножив его на перемещение материальной точки и учитывая, что a → = d v → / d t {\displaystyle {\vec {a}}={\rm {d}}{\vec {v}}/{\rm {d}}t} , причём d (v 2) / d t = d (v → ⋅ v →) / d t = 2 v → ⋅ d v → / d t {\displaystyle {\rm {d}}(v^{2})/{\rm {d}}t={\rm {d}}({\vec {v}}\cdot {\vec {v}})/{\rm {d}}t=2{\vec {v}}\cdot {\rm {d}}{\vec {v}}/{\rm {d}}t} , получим F → d s → = d (m v 2 / 2) = d T {\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}(mv^{2}/2)={\rm {d}}T} .

Если система замкнута (внешние силы отсутствуют) или равнодействующая всех сил равна нулю, то стоящая под дифференциалом величина T {\displaystyle \ T} остаётся постоянной, то есть кинетическая энергия является интегралом движения .

Случай абсолютно твёрдого тела

T = M v 2 2 + I ω 2 2 . {\displaystyle T={\frac {Mv^{2}}{2}}+{\frac {I\omega ^{2}}{2}}.}

Здесь - масса тела, v {\displaystyle \ v} - скорость центра масс , ω → {\displaystyle {\vec {\omega }}} и - угловая скорость тела и его момент инерции относительно мгновенной оси , проходящей через центр масс .

Кинетическая энергия в гидродинамике

Подразделение кинетической энергии на упорядоченную и неупорядоченную (флуктуационную) части зависит от выбора масштаба осреднения по объёму или по времени. Так, например, крупные атмосферные вихри циклоны и антициклоны , порождающие определённую погоду в месте наблюдения, рассматриваются в метеорологии как упорядоченное движение атмосферы, в то время как с точки зрения общей циркуляции атмосферы и теории климата это - просто большие вихри, относимые к неупорядоченному движению атмосферы.

Кинетическая энергия в квантовой механике

В квантовой механике кинетическая энергия представляет собой оператор , записывающийся, по аналогии с классической записью, через импульс, который в этом случае также является оператором ( p ^ = − j ℏ ∇ {\displaystyle {\hat {p}}=-j\hbar \nabla } , - мнимая единица):

T ^ = p ^ 2 2 m = − ℏ 2 2 m Δ {\displaystyle {\hat {T}}={\frac {{\hat {p}}^{2}}{2m}}=-{\frac {\hbar ^{2}}{2m}}\Delta }

где ℏ {\displaystyle \hbar } - редуцированная постоянная Планка , ∇ {\displaystyle \nabla } - оператор набла , Δ {\displaystyle \Delta } - оператор Лапласа . Кинетическая энергия в таком виде входит в важнейшее уравнение квантовой механики - уравнение Шрёдингера .

Кинетическая энергия в релятивистской механике

Если в задаче допускается движение со скоростями, близкими к скорости света , кинетическая энергия материальной точки определяется как

T = m c 2 1 − v 2 / c 2 − m c 2 , {\displaystyle T={\frac {mc^{2}}{\sqrt {1-v^{2}/c^{2}}}}-mc^{2},}

где - масса , v {\displaystyle \ v} - скорость движения в выбранной инерциальной системе отсчёта, c {\displaystyle \ c} - скорость света в вакууме ( m c 2 {\displaystyle mc^{2}} - энергия покоя). Как и в классическом случае, имеет место соотношение F → d s → = d T {\displaystyle \ {\vec {F}}{\rm {d}}{\vec {s}}={\rm {d}}T} , получаемое посредством умножения на d s → = v → d t {\displaystyle {\rm {d}}{\vec {s}}={\vec {v}}{\rm {d}}t} выражения второго закона Ньютона (в виде F → = m ⋅ d (v → / 1 − v 2 / c 2) / d t {\displaystyle \ {\vec {F}}=m\cdot {\rm {d}}({\vec {v}}/{\sqrt {1-v^{2}/c^{2}}})/{\rm {d}}t} ).

В § 88 выражение было названо кинетической энергией тела. Рассмотрим подробнее содержание этого понятия.

Допустим, что тело массы было вначале неподвижно (рис. 5.8). На него подействовала сила под действием которой тело прошло расстояние приобретя скорость При этом сила совершила работу и будет иметь место соотношение

Если взять другое тело массы и той же силой совершить такую же работу то для возникшего движения снова будет справедливо соотношение

где конечная скорость тела массы

Одна и та же работа силы сообщает телам с разной массой всегда один и тот же запас движения, и это выражается равенством

Таким образом, кинетическую энергию тела можно рассматривать как меру запаса движения данного тела. С помощью этой меры можно сравнивать между собой те запасы движения, которыми обладают различные тела или системы тел. Замечательно то, что эта мера учитывает любые движения независимо от их направления.

Поэтому она может быть использована для расчета не только упорядоченных движений тел, но и неупорядоченных, хаотических движений, происходящих в сложных системах многих тел. Используя, например, понятие кинетической энергии, можно количественно определить тот запас движения, которым обладает некоторая масса газа. Молекулы газа совершают непрерывные хаотические движения. Сумма кинетических энергий этих молекул определит энергию всей массы газа, т. е. даст количественную характеристику интенсивности теплового движения, запасенного в этом газе. Она также даст количественное представление о состоянии движения системы тел в целом.

Отметим, что получить представление о состоянии внутренних движений в системе тел с помощью вектора количества движения нельзя. Возьмем, например, два тела одинаковой массы которые движутся в противоположных направлениях с равными по модулю скоростями Количество движения каждого из тел будет равно Это дает представление о том, как движется каждое тело в отдельности. Количество же движения всей системы в целом, равное векторной сумме количеств движения отдельных тел, будет равно нулю.

Зная только этот результат (количество движения системы равно нулю), мы даже не можем сказать, движутся ли тела системы вообще. Кинетическая же энергия такой системы будет равна Зная это, во-первых, мы можем сделать вывод о том, что в данной системе тел есть движение, во-вторых, мы можем судить, насколько велик запас этого движения.

Рассмотрим случай, когда тело массы двигаясь со скоростью (рис. 5.9), встречается с другим телом (например пружинкой). При взаимодействии возникают силы, тормозящие движение тела и вызывающие деформацию или движение другого тела. Таким образом, оказывается, что движущееся тело при встрече с другими

телами может совершить некоторую работу по деформации или приведению этих тел в движение. Найдем эту работу.

По третьему закону Ньютона в любой момент времени сила действия тела на пружинку равна силе развиваемой пружинкой: Поэтому работа тела при его торможении равна работе пружинки с обратным знаком:

Подставляя получим

Это дает нам право утверждать, что кинетическая энергия любого тела определяет ту работу, которую может совершить движущееся тело во время остановки при взаимодействии с другими телами. Кинетическая энергия выступает как мера работоспособности движущегося тела. Об этом же говорит и происхождение самого слова «энергия». По-гречески слово «энергия» означает деятельность, работоспособность.

Итак, каждое движущееся тело способно произвести некоторое количество работы. Эта работа определяется массой и скоростью тела. Если тело во время взаимодействия совершает эту работу, то начинает исчезать движение тела. При совершении работы движение тела превращается в движение других тел или их частей. При этом может происходить и превращение механического движения в другие формы движения материи, например превращение механического движения в тепловое.

Окончательный вывод: кинетическая энергия является мерой запаса движения тела и одновременно определяет работу, которую тело способно совершить при взаимодействии с другими телами.

Кинетическая энергия равна половине произведения массы тела на квадрат его скорости:

Из уравнения ясно, что единицы кинетической энергии те же, что и единицы работы: (§ 89).